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Abstract. We put a left model structure on the category of A∞-categories enriched in a
reasonable monoidal model category. The weak equivalences are the Dwyer-Kan equivalences.
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Let C be a symmetric monoidal combinatorial closed model category satisfying the monoid
axiom. Muro proves in [Mur12] that there is a model structure on the category of small
C-enriched categories in which the weak equivalences are the Dwyer-Kan equivalences. The
purpose of this note is to extend his result to the category of A∞-categories. More precisely,
we give ourselves a non-symmetric operad O in C with a map to A the associative operad. We
assume that the map O→ A is a weak equivalence and an epimorphism in arity 0 and 2. Given
an O-category C, we can form its homotopy category hC. The definition is given in 2.2.

Definition 0.1. We say that a map f : C → D of O-categories is a Dwyer-Kan equivalence if
• For each pair (x, y) of objects of C, the induced map MapC(x, y)→ MapD(fx, fy) is a
weak equivalence in C.

The induced map hC → hD is an equivalence of categories.

Our main results are the following :

Theorem 0.2. There is a left model structure on OCat, the category of O-categories enriched
in C. The weak equivalences are the Dwyer-Kan equivalences and the trivial fibrations are the
maps that are surjective on objects and induce trivial fibrations on mapping spaces. Moreover,
this left model structure is equivalent to the Muro model structure on ACat.

Theorem 0.3. If C satisfies the following two extra conditions:
• All objects of C are cofibrant.
• The weak equivalences in C are stable under filtered colimits.

Then the left model structure on OCat is in fact a model structure that is moreover left proper.
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1. Left model categories

1.1. Definitions and Smith theorem. Background on left model categories can be found in
[Bar10].

Definition 1.1. A left model category is a category with three subcategories containing all the
objects C, F and W satisfying the following axioms:

(1) The category M is complete and cocomplete.
(2) The class W satisfies the two-out-of three property.
(3) The three classes of maps W , F and C are closed under retracts.
(4) Cofibrations have the left lifting property against trivial fibrations and fibrations have

the right lifting property against trivial cofibrations with cofibrant domain.
(5) Any map can be factored as a cofibration followed by a trivial fibration and any map

with cofibrant domain can be factored as a trivial cofibration followed by a fibration.

Remark 1.2. As in the case of model categories, an object X is cofibrant if the map ∅→ X
is a cofibration. In particular, the initial object itself is cofibrant.

Remark 1.3. Let f be a map with the left lifting property against trivial fibrations. Then
f can be factored as a cofibrations followed by a trivial fibrations. According to the retract
argument, f is a retract of the first map in the factorization hence, f is a cofibration. Similarly,
if f has cofibrant domain and the left lifting property against fibrations, then f is a trivial
cofibration. Dually, one proves that if f has cofibrant domain and has the right lifting property
against trivial cofibration with cofibrant domain, then f is a fibration and if f has the right
lifting property against cofibrations, then f is a trivial fibration.

Let M be a complete and cocomplete category and let I be a set of maps of M.

Definition 1.4.
• An I-injective map is a map with the right lifting property against maps of I.
• An I-cofibration is a map with the left lifting property against I-injective maps.
• An I-cell complex is a transfinite composition of pushouts of maps of I.
• An I-cofibrant object is an object X such that ∅→ X is an I-cofibration.

We denote by I-inj the class of I-injective maps. We denote by I-cof the class of I-
cofibrations.

Remark 1.5. The class I-cof can be alternatively defined as the smallest weakly saturated
class of arrows of M containing I. It is also the class of arrows which can be obtained as a
retract of an I-cell complex. These results can be fond in appendix A of [Lur09].

We have the following theorem which allows us to construct left model structures. The
analogous result for model structure is well-known.

Theorem 1.6. Let M be a complete and cocomplete category with a class W of maps which con-
tains all the isomorphisms and is closed under retracts and under the two-out-of three property.
Let I and J be two sets of maps. Assume that

• Both I and J permit the small object argument.
• I-inj is a subclass of J-inj ∩W .
• Elements of J are in I-cof.
• J-cell complexes with cofibrant domain are weak equivalences.
• Either

– J-inj ∩W is a subclass of I-inj.
– I-cof ∩W is a subclass of J-cof.
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Then there is a left model structure on M in which the weak equivalences are the maps of W ,
the cofibrations are the I-cofibrations and the fibrations are the J-injective.

Proof. Axiom 1, 2 are satisfied by hypothesis. W is closed under retracts by assumption. F
and C are closed under retracts since they are defined by a right or left lifting property.

The small object argument gives a factorization of any map as a cofibration followed by a
trivial fibration and as a relative J-cell complex followed by a fibration.

By assumption, a relative J-cell complex is a cofibration. Since by assumption, a J-cell
complex with cofibrant domain is a weak equivalence, axiom 5 is satisfied.

Now let us check axiom 4 assuming the second case of the last hypothesis. By definition a
cofibration has the left lifting property against any map in I-inj. Since I-inj is exactly the class
of trivial fibration the first half of the axiom is checked.

Let f : A→ B be a trivial cofibration with cofibrant domain, we want to show that f is in J-
cof. By the small object argument, we can factor f = p◦ i as a relative J-cell complex i followed
by a map in J-inj. A relative J-cell complex with cofibrant domain is a weak equivalence, thus
p is a weak equivalence. According to our hypothesis, p is in I-inj. According to the retract
argument, f is a retract of i. Hence f is in J-cof. �

If the category is locally presentable, there is a simplification of this theorem due to Jeff
Smith in the case of model structures. We give a version in the case of left model structures.

Theorem 1.7. Let M be a locally presentable category, W be a subset of Ar(M) containing
all identity maps. Let I be a set of morphisms of M such that:

• W is an accessible subcategory.
• I-inj is contained in W .
• An I-cof ∩W -cell complex with cofibrant codomain is in W .

Then M has a left model category structure whose weak equivalences are maps in W , and
cofibrations are maps in I-cof.

Proof. We mimick the proof of the analgous result in [Bar10]. [Bar10, Lemma 2.4.] holds
without change with our hypothesis and gives a set J of arrows in W ∩ I-cof. [Bar10, Lemma
2.3.] tells us that W ∩ I-cof is a subclass of J-cof. Let us check that this set J satisfies
the hypothesis of 1.6. By hypothesis, the pushout of a map in J along a map with cofibrant
codomain is in W . Let f be a map in I-inj, we already know that f is in W , we need to check
that it is in J-inj but this is clear since J is contained in I-cof. �

2. A-infinity categories

Let C be a symmetric monoidal category and O be a non-symmetric operad in C.

Definition 2.1. An O-category C is the data of:
• A set of object Ob(C).
• For each pair of objects (x, y) an object Map(x, y) of C.
• Composition maps:

O(n)⊗Map(x0, x1)⊗Map(x1, x2)⊗ . . .⊗Map(xn−1, xn)→ Map(x0, xn)

moreover, these compositions maps are assumed to be associative in the obvious way.

A map of O-categories C → D is the data of a map f : Ob(C) → Ob(D) and a map
MapC(x, y)→ MapD(fx, fy) for all pair of objects (x, y) in Ob(C) that is compatible with the
composition in the obvious way.
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Let A be the associative operad. It is the non-symmetric operad with A(n) = I. An algebra
over A is nothing but a monoid in C. In that case, an A-category is just a category enriched
in C.

The definition of an O-category can be made for an arbitrary non-symmetric operad O.
However, from now on we will assume that C has the structure of a symmetric monoidal model
category and that O is equipped with a map O→ A which is a weak equivalence of operad. This
assumption will be necessary to be able to speak about the homotopy category of an O-category
in a sensible way.

Definition 2.2. Let C be an O-category. The homotopy category hC is the category whose
set of object is Ob(C) and with

hC(x, y) = Ho(C)(I, MapC(x, y))

Example 2.3. Let X be a topological space. Let E1 be the operad of little intervals. There is
an E1-category P(X) whose objects are the points of X and whose space of morphisms between
two points (x, y) is the pullback

P(X)(x, y)

��

// Map([0, 1], X)

��
pt

(x,y) // Map({0, 1}, X) ∼= X ×X

Let S be a set. We denote by OCatS the category whose objects are O-categories whose
set of objects is S and whose morphisms are the morphisms of O-categories that induce the
identity on the set of objects.

If C is a monoidal model category satisfying the monoid axiom, the transferred model struc-
ture exists on OCatS for each S (see [Mur11, Corollary 10.4 and 10.5]). Moreover any map
of sets S → T induces a map of operad OS → OT which correspondingly induces a Quillen
adjuction

u! : OCatS � OCatT : u∗

We will need to make an extra-assumption on the map O → A. First, recall that a map
c→ d in a category C is said to be an epimorphism if for all k in C the induced map

C(d, k)→ C(c, k)

is an injection.

Proposition 2.4. Let C be a closed symmetric monoidal category. Let p : c → d be an
epimorphism and k be any object then p⊗ idk is an epimorphism.

Proof. Let l be an object of C, we need to check that

C(d⊗ k, l)→ C(c⊗ k, l)

is an injection.
Let Hom denotes the inner Hom of C. By adjunction, the above map can be identified with

C(d, Hom(l, k))→ C(c, Hom(l, k))

which is an injection since p is an epimorphism. �

From now, on, we will make the following assumption about the map O→ A.

Assumption 2.5. The map A(2)→ O(2) and O(0)→ A(0) are epimorphisms.
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3. The left model structure

3.1. The cofibrations. This subsection is inspired by the paper [Sta12] which explains how
to construct weak factorization systems on a Grothendieck construction.

We make the following notations. Let F : K → Cat be a functor with the property that
F (u) is a left adjoint for any map u ∈ K. We denote by u! the functor F (u) : F (k)→ F (l) and
by u∗ its right adjoint.

The objects in the Grothendieck construction Gr(F ) are denoted (k, X) where k is an object
of K and X is an object in F (k). A map in the Grothendieck construction of F from (k, X) to
(l, Y ) can be described as a pair (u, fu) where u : k → l is a map in K and fu : X → u∗Y or
equivalently as a pair (u, fu) where fu : u!X → Y is the adjoint map to fu.

Proposition 3.1. Assume that K is equipped with a weak factorization system (A,B). Assume
further that for each k ∈ K, F (k) is endowed with a weak factorization system (Ak,Bk). Assume
that for any map u : k → l, the functor u∗ sends Bl to Bk. Then there is a weak factorization
system (Ap,Bp) on Gr(F ) in which a map (u, fu) is in Ap if u is in A and fu is in Al and a
map (u, fu) is in Bp if u is in B and fu is in Bk.

Proof. See [Sta12]. �

The category of O-categories can be described as the Grothendieck construction of the functor
Setop → Cat sending S to the category OCatS . We denote by (u, fu) : C → D a map of O-
category where u : Ob(C)→ Ob(D) is a map of sets and fu : C → u∗D is a map of O-categories
with Ob(C) as set of objects.

Definition 3.2. We say that a map (u, fu) of O-categories C → D is a trivial fibration if u is
surjective and fu is a trivial fibration. We say that a map is a cofibration if u is injective and
fu is a cofibration.

Proposition 3.3. Cofibrations and trivial fibrations form a weak factorization system on OCat.

Proof. This follows from 3.1. �

Observe that a cofibrant object in OCat or ACat is just an object which is cofibrant in
OCatS or ACatS where S is its set of objects.

Proposition 3.4. A trivial fibration C → D is a map such that Ob(C)→ Ob(D) is surjective
and for each x, y in Ob(C), the induced map

MapC(x, y)→ MapD(x, y)
is a trivial fibration in C.

Proof. Trivial. �

For K an object of C, we denote by [1]K the object of OCat0,1 with
Map[1]K

(0, 1) = K, Map[1]K
(1, 0) = ∅, Map[1]K

(0, 0) = Map[1]K
(1, 1) = I

Note that for any C in OCat, a map [1]K → C is exactly the data of two points (x, y) in
Ob(C) and a map K → MapC(x, y).

We define a set I of arrows in OCat consisting of the inclusion ∅ → [0] and the maps
[1]K → [1]L for {K → L} a set of generating cofibrations in C. using the previous proposition,
it is clear that a map with the RLP against those maps is exactly a trivial fibration.

There is a left adjoint functor S : OCatT → ACatT for each T which is a left Quillen
equivalence if O is equivalent to the operad A. These left adjoint assemble into a left adjoint
S : OCat → ACat which we call strictification. We denote by U its right adjoint. U can
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be described simply as the functor which gives to a category the trivial O-category structure
transferred along the morphism O→ A. Note that U and S preserve the set of objects.

Proposition 3.5. The functor S preserves cofibrations.

Proof. Let u : S → T be a map of sets. The diagram of right adjoints

ACatT
u∗ //

U

��

ACatS

U

��
OCatT

u∗ // OCatS

obviously commutes up to isomorphism. Therefore, the corresponding diagram of left adjoints

OCatS
u! //

S

��

OCatT

S

��
ACatS

u! // ACatT

commutes up to isomorphism. Let f = (u, fu) be a cofibration in OCat. Strictification preserves
the set of object, therefore, S(f) is injective on objects. According to the previous remark, the
proposition will be proved if we show that the strictification of a cofibration in OCatT is a
cofibration in ACatT . But this follows from the fact that S : OCatT → ACatT is a left
Quillen functor. �

3.2. Weak equivalences.

Definition 3.6. We say that a map between cofibrant objects of OCat is a weak equivalence
if its strictification is a weak equivalence. We say that a map C → D is a weak equivalence if
it is so when one applies a cofibrant replacement functor to it.

Our goal is to show that the class of weak equivalences coincides with the class of DK
equivalences defined in 0.1. Notice first that both classes of equivalences satisfy the two-out-of
three condition.

Lemma 3.7. Let C → D be a map in OCatS. Then C → D is a weak equivalence if and only
if it is a DK equivalence.

Proof. With a fixed set of object, the essential surjectivity is automatic. The result is then
obvious. �

Lemma 3.8. C → D is a DK equivalence of A-categories if and only if U(C) → U(D) is a
DK equivalence of O-categories.

Proof. Indeed, the homotopy category of U(C) is isomorphic to the homotopy category of
C. �

Proposition 3.9. The functor U is fully faithful.

Proof. It is clear that U is faithful. If f : UC → UD is a map of O-categories, then it induces
a map

MapC(x, y)→ MapD(fx, fy)



THE HOMOTOPY THEORY OF A∞-CATEGORIES 7

for any pair of objects x and y. We claim that these maps assemble into a map in ACat.
Indeed, if x, y, z are three objects of C, we have a diagram

O(2)⊗MapC(x, y)⊗MapC(y, z)

��

f // O(2)⊗MapD(fx, fy)⊗MapD(fy, fz)

��
MapC(x, y)⊗MapC(y, z)

��

f // MapD(fx, fy)⊗MapD(fy, fz)

��
MapC(x, y) f // MapD(fx, fy)

The top square obviously commutes. The total square commutes because f : UC → UD is a
map of O-categories. Since the map

O(2)⊗MapC(x, y)⊗MapC(y, z)→ MapC(x, y)⊗MapC(y, z)

is an epimorphism by our assumption 2.5 and 2.4, we find that the bottom square commutes,
that is f commutes with the composition of C and D. One would show similarly that f
commutes with the units of C and D using the fact that O(0) → A(0) is an epimorphism.
Hence, f lifts to a map in ACat. �

Corollary 3.10. Let C be an A-category. The counit map SU(C)→ C is an isomorphism.

Proposition 3.11. A map in OCat is a weak equivalence if and only if it is a DK equivalence.

Proof. If C is a cofibrant O-category, then the unit map C → US(C) is a weak equivalence in
OCatOb(C) hence, it is a DK equivalence by 3.7.

Let C → D be a map of O-category with C and D cofibrant. We have a commutative
diagram:

C //

��

D

��
US(C) // US(C)

The vertical maps are DK equivalences and weak equivalences. Thus the upper horizontal
map is a DK equivalence (resp. weak equivalence) if and only if the lower one is. The result
then follows from 3.8.

Now let C → D be a map between not necessarily cofibrant O-categories. Let C ′ → C be
a cofibrant replacement of C in OCatOb(C). The composite map g : C ′ → C → D can be
factored as

C ′ → u!C
′ → D

where u : Ob(C) = Ob(C) → Ob(D) is the induced map on objects. Since u! is left Quillen,
then u!C

′ is cofibrant in OCatOb(D). We factor this map further into

C ′ → u!C
′ → D′ → D

where u!C
′ → D′ is a cofibration in OCatOb(D) and D′ → D is a trivial fibration. In particular,

D′ is a cofibrant object fitting in the commutative diagram

C ′ //

��

D′

��
C // D
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in which both vertical arrows are weak equivalences in OCatOb(C) and OCatOb(D). This implies
by 3.7 that both vertical arrows are DK equivalences and weak equivalences in OCat. Hence
the lower horizontal arrow is a weak equivalence (resp. DK equivalence) if and only if the upper
horizontal arrow is a weak equivalence (resp. DK equivalence). This concludes the proof. �

3.3. Existence of the left model structure.
Proposition 3.12. The maps in I-inj are weak equivalences.
Proof. By 3.11, it suffices to show that the maps in I-inj are DK-equivalences.

We have already mentioned that a map in I-inj is a map f = (u, fu) : C → D such that u is
surjective and fu is a trivial fibration in OCatT where T is the domain of u. In particular, f
is essentially surjective. Let x and y be two elements of T , let i : {x, y} → T be the inclusion.
The map

i∗fu : i∗C → i∗u∗D

is a trivial fibration in OCat{x,y} since i∗ is a right Quillen adjoint. This means in particular
that the map

MapC(x, y)→ MapD(ux, uy)
is a trivial fibration. This proves that f is a DK equivalence. �

Proof of 0.2. By 1.7, it suffices to prove that an I-cof ∩ W -cell complex with cofibrant
domain is a weak equivalence. Let f : A→ B be such a map. Since f is a cofibration, then B is
also cofibrant. To check that f is a weak equivalence it suffices to show that its strictification is
a weak equivalence. The map f is a transfinite composition of pushouts of maps of I. Since the
domain of f is cofibrant, and pushout and transfinite compostion of maps of I are cofibrations,
each step in the transfinite composition is cofibrant. The functor S preserves cofibration and
weak equivalences between cofibrant objects. As a left adjoint, S also preserves pushouts and
transfinite compositions. Thus S(f) is a transfinite composition of pushouts of maps which
are weak equivalences and cofibrations in ACat. Since ACat is a model category by [Mur12,
Theorem 1.1.], S(f) is a trivial cofibration. �

3.4. Model structure. In this subsection, we assume that all objects of C are cofibrant. Our
goal is to prove that the left model structure of the previous proposition is in fact a model
structure.
Lemma 3.13. Let K → L be a generating cofibration in C. Let us consider a commutative
diagram

[1]K

��

g // C

��

u // D

��
[1]L // C ′

u
// D′

in which both squares are pushout squares. Then if u is a weak equivalence which is a bijection
on objects, so is u′.
Proof. We denote by f : {0, 1} → S = Ob(C) the map induced by g on objects. We have the
object f![1]K in OCatS which is cofibrant. Moreover, the map f![1]K → f![1]L is a cofibration
in OCatS . We also have a commutative diagram

f![1]K

��

// C

��

u // D

��
f![1]L // C ′

u′
// D′
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in which both squares are pushouts. But the map u′ is a weak equivalence in OCatS by [Mur14,
Theorem 1.13]. �

Now, we can prove theorem 0.3.
Proof of 0.3. We apply [Lur09, Proposition A.2.6.13]. Condition (1) is proved as in the case

of ACat. Condition (3) is 3.12. Thus it suffices to prove condion (2). Let us consider the
following commutative diagram

(3.1) [1]K

��

// C

��

u // D

��
[1]L // E

v
// F

in which both squares are pushouts squares and u is a weak equivalence. We want to prove
that v is a weak equivalence.

Let C ′ → C be a cofibrant replacement of C and C ′
u′−→ D′ → D be a factorization of

C ′ → C → D as a cofibration followed by a trivial fibration. We can assume that C ′ → C
and D′ → D are cofibrant replacement in OCatOb(C) and OCatOb(D)respectively. Since K is
cofibrant (as is any object in C), we can lift [1]K → C to a map [1]K → C ′. We can form the
following commutative diagram:

(3.2) [1]K

��

// C ′

��

u′ // D′

��
[1]L // E′

v′
// F ′

in which both squares are pushouts. This commutative diagram maps to the previous one.
Moreover, according to the previous lemma, the map from diagram 3.2 to diagram 3.1 is level-
wise a weak equivalence. Hence, v is a weak equivalence, if and only if v′ is one.

We can hit the diagram 3.2 with the functor S and we get a commutative diagram in ACat:

[1]K

��

// SC ′

��

Su′ // SD′

��
[1]L // SE′

Sv′
// SF ′

in which both squares are pushout squares. Since C ′ and D′ are cofibrant, then Su′ is a
weak equivalence by definition. Thus, by left properness of ACat, we find that Sv′ is a weak
equivalence. Since E′ and F ′ are cofibrant, this implies that v′ is a weak equivalence. �

3.5. Equivalence with strict categories. The functor U : ACat → OCat preserves weak
equivalences. Thus, it is a map of relative categories.
Theorem 3.14. The functor U : ACat→ OCat is a weak equivalence of relative categories.
Proof. Let us consider the functor S ◦ Q : OCat → ACat where Q is a functorial cofibrant
replacement functor in ACat. Then S ◦Q preserves weak equivalences. We also have natural
zig-zags of weak equivalences S ◦Q ◦ U → S ◦ U = idOCat and idACat ← Q→ U ◦ S ◦Q. The
reason for these two zig-zag of weak equivalences is that they exist in ACatS and OCatS for
each S because

S : OCatS � ACatS : U

is a Quillen equivalence in which U preserves all weak equivalences. �
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4. Examples

Bicategories. Take Cat to be the category of categories and O to be an appropriate operad in
Cat. Then OCat is the category of bicategories. We can put the canonical model structure on
Cat. The weak equivalences are the equivalences of categories. Wih this model structure, Cat
satisfies the conditions of 0.3, thus, we find a model structure on the category of bicategories
which is Quillen equivalent to the model structure on 2-categories. This recovers the main
result of [Lac04].

A∞-categories. Take Ch(R) to be the category of chain complexes over a commutative ring
with the projective model structure. Take O to be a non symmetric operad in Ch(R) equipped
with a weak equivalence to the associative operad. Then there is a left model structure on
the category of O-categories. In particular, taking O to be the cellular chains on the Stasheff
operad, we obtain the well-studied notion of an A∞-category. Theorem 0.3 insures that if R is
a field, this left model structure is in fact a model structure.
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